33 research outputs found

    Adult Learning Environments: Requests upon and Preferences of Interior Designers

    Get PDF
    Adult Educatio

    GridCertLib: a Single Sign-on Solution for Grid Web Applications and Portals

    Full text link
    This paper describes the design and implementation of GridCertLib, a Java library leveraging a Shibboleth-based authentication infrastructure and the SLCS online certificate signing service, to provide short-lived X.509 certificates and Grid proxies. The main use case envisioned for GridCertLib, is to provide seamless and secure access to Grid/X.509 certificates and proxies in web applications and portals: when a user logs in to the portal using Shibboleth authentication, GridCertLib can automatically obtain a Grid/X.509 certificate from the SLCS service and generate a VOMS proxy from it. We give an overview of the architecture of GridCertLib and briefly describe its programming model. Its application to some deployment scenarios is outlined, as well as a report on practical experience integrating GridCertLib into portals for Bioinformatics and Computational Chemistry applications, based on the popular P-GRADE and Django softwares.Comment: 18 pages, 1 figure; final manuscript accepted for publication by the "Journal of Grid Computing

    Constraining mass ratio and extinction in the FU Orionis binary system with infrared integral field spectroscopy

    Get PDF
    We report low resolution near infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.5" south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J and H band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low resolution near infrared spectrum in conjunction with 10.2 micron interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A_V =8-12, with an effective temperature of ~ 4000-6500 K . Finally we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary syste

    A New High Contrast Imaging Program at Palomar Observatory

    Get PDF
    We describe a new instrument that forms the core of a long-term high contrast imaging program at the 200-inch Hale Telescope at Palomar Observatory. The primary scientific thrust is to obtain images and low-resolution spectroscopy of brown dwarfs and young Jovian mass exoplanets in the vicinity of stars within 50 parsecs of the Sun. The instrument is a microlens-based integral field spectrograph integrated with a diffraction limited, apodized-pupil Lyot coronagraph, mounted behind the Palomar adaptive optics system. The spectrograph obtains imaging in 23 channels across the J and H bands (1.06 - 1.78 microns). In addition to obtaining spectra, this wavelength resolution allows suppression of the chromatically dependent speckle noise, which we describe. We have recently installed a novel internal wave front calibration system that will provide continuous updates to the AO system every 0.5 - 1.0 minutes by sensing the wave front within the coronagraph. The Palomar AO system is undergoing an upgrade to a much higher-order AO system ("PALM-3000"): a 3388-actuator tweeter deformable mirror working together with the existing 241-actuator mirror. This system will allow correction with subapertures as small as 8cm at the telescope pupil using natural guide stars. The coronagraph alone has achieved an initial dynamic range in the H-band of 2 X 10^-4 at 1 arcsecond, without speckle noise suppression. We demonstrate that spectral speckle suppression is providing a factor of 10-20 improvement over this bringing our current contrast at an arcsecond to ~2 X 10^-5. This system is the first of a new generation of apodized pupil coronagraphs combined with high-order adaptive optics and integral field spectrographs (e.g. GPI, SPHERE, HiCIAO), and we anticipate this instrument will make a lasting contribution to high contrast imaging in the Northern Hemisphere for years.Comment: Accepted to PASP: 12 pages, 12 figure

    Electric Field Conjugation with the Project 1640 coronagraph

    Full text link
    The Project 1640 instrument on the 200-inch Hale telescope at Palomar Observatory is a coronagraphic instrument with an integral field spectrograph at the back end, designed to find young, self-luminous planets around nearby stars. To reach the necessary contrast for this, the PALM-3000 adaptive optics system corrects for fast atmospheric speckles, while CAL, a phase-shifting interferometer in a Mach-Zehnder configuration, measures the quasistatic components of the complex electric field in the pupil plane following the coronagraphic stop. Two additional sensors measure and control low-order modes. These field measurements may then be combined with a system model and data taken separately using a white-light source internal to the AO system to correct for both phase and amplitude aberrations. Here, we discuss and demonstrate the procedure to maintain a half-plane dark hole in the image plane while the spectrograph is taking data, including initial on-sky performance.Comment: 9 pages, 7 figures, in Proceedings of SPIE, 8864-19 (2013

    Spectral Typing of Late Type Stellar Companions to Young Stars from Low Dispersion Near-Infrared Integral Field Unit Data

    Get PDF
    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R\sim30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison we test the accuracy and consistency of spectral type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.Comment: Accepted to Astronomical Journal, 25 pages, 8 figure

    Know The Star, Know the Planet. IV. A Stellar Companion to the Host star of the Eccentric Exoplanet HD 8673b

    Get PDF
    HD 8673 hosts a massive exoplanet in a highly eccentric orbit (e=0.723). Based on two epochs of speckle interferometry a previous publication identified a candidate stellar companion. We observed HD 8673 multiple times with the 10 m Keck II telescope, the 5 m Hale telescope, the 3.63 m AEOS telescope and the 1.5m Palomar telescope in a variety of filters with the aim of confirming and characterizing the stellar companion. We did not detect the candidate companion, which we now conclude was a false detection, but we did detect a fainter companion. We collected astrometry and photometry of the companion on six epochs in a variety of filters. The measured differential photometry enabled us to determine that the companion is an early M dwarf with a mass estimate of 0.33-0.45 M?. The companion has a projected separation of 10 AU, which is one of the smallest projected separations of an exoplanet host binary system. Based on the limited astrometry collected, we are able to constrain the orbit of the stellar companion to a semi-major axis of 35{60 AU, an eccentricity ? 0.5 and an inclination of 75{85?. The stellar companion has likely strongly in uenced the orbit of the exoplanet and quite possibly explains its high eccentricity.Comment: Accepted to the Astronomical Journal, 6 Pages, 5 Figure
    corecore